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Abstract 

This paper describes the role of requirements discovery 
during the testing of a safety-critical sofiware system. 
Analysis of problem reports generated by the integration 
and system testing of an embedded, safety-critical 
software system identlfied four common mechanisms for 
requirements discove y and resolution during testing: (1) 
Incomplete requirements, resolved by changes to the 
software, (2) Unexpected requirements interactions, 
resolved by changes to the operational procedures, (3) 
Requirements confusion by the testers, resolved by 
changes to the documentation, and (4) Requirements 
confusion by the testers, resolved by a determination that 
no change was needed. The experience reported here 
confirms that requirements discove y during testing is 
Pequently due to communication diflculties and subtle 
interface issues. The results also suggest that ‘ffalse 
positive” problem reports from testing (in which the 
software behaves correctly but unexpectedly) provide a 
rich source of requirements information that can be used 
to reduce operational anomalies in critical systems. 

1. Introduction 

Th~s paper describes the role of requirements discovery 
during the testing of a safety-critical software system. 
Difficulties with requirements have been repeatedly 
implicated as a source of both testing defects [3, 71 and of 
accidents in deployed systems [4, 101. In an effort to 
improve our understanding of how requirements 
discovery occurs during testing, and how such discoveries 
are resolved (or are not resolved) prior to deployment, we 
investigated the requirements-related problems reported 
during testing of a safety-critical system currently under 
development. Analysis of the problem reports generated 
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during integration and system testing of the flight 
software distinguished four common mechanisms for 
requirements discovery and resolution during testing: (1) 
Incomplete requirements, resolved by changes to the 
software. As often occurs, testing caused several 
previously unidentified requirements to surface. These 
new requirements usually involved complicated interface 
issues between separate software systems or between 
hardware and software. Several of the incomplete 
requirements involved fault protection, of special concern 
in safety-critical systems. 

(2)  Unexpected requirements interactions, resolved by 
changes to the operational procedures. A closely related 
mechanism for requirements discovery was the 
identification during testing of unexpected interactions 
among the existing requirements. Typically, these 
interactions resulted in new required sequencing of 
activities when the interleaved processes unexpectedly 
caused incorrect behavior or did not achieve the required 
precondition for correct execution of the software. 

(3) Requirements confusion by the testers, resolved by 
changes to the documentation. Testing revealed some 
significant misunderstandings on the part of the testers 
regarding what the requirements actually were. In these 
cases the software worked as required, and the 
requirements were correct, but the software’s behavior 
was unexpected. The corrective action was not to fix the 
software, but to enhance the documentation in order to 
better communicate the required software behavior or 
requirements rationale. 

(4) Requirements confusion by the testers, resolved by a 
determination that no change was needed. In th~s 
mechanism testing also revealed a gap in requirements 
understanding. However, the problem report was judged 
to be a “false positive,” i.e., indicating failure where the 
software in fact behaved correctly. We found that in 
some cases where the software behaved correctly but 
unexpectedly, an opportunity was missed to prevent 
similar, subsequent requirements confusion by the 
operators of the deployed system. We propose some 
guidelines for distinguishing and responding to such 
situations. 



The experience reported here suggests that problem 
reports generated during testing are an underused source 
of information about potential requirement-related 
anomalies that may occur after the software is deployed. 
Test defect reports provide a unique source of insights 
into future users’ gaps in domain knowledge, 
misidentification of requirement rationales, and erroneous 
assumptions regarding required sequences of activities. 
In this limited sense, testing problem reports may provide 
a preview of some possible operational problems. The 
main contributions of the paper are (1) to identify the 
common mechanisms by which requirements discovery 
and resolution occurred during testing, and (2) to report 
the lessons learned regarding how such discoveries can be 
better used to reduce future requirements anomalies in the 
deployed system. 

The rest of the paper is divided into sections as follows. 
Section 2 describes the approach used to investigate 
requirements discovery during testing. Section 3 
discusses and evaluates the results in the context of some 
illustrative examples. Section 4 briefly compares the 
experience described here to others’ findings. Section 5 
summarizes the lessons learned. 

2. Approach 

The data for thls analysis consisted of the 171 
completed ProblemBailure Reports (PFRs) written by 
project test teams during integration and system testing of 
the Mars Exploration Rovers (MER). MER, to be 
launched in 2003, will explore Mars with two robotic 
rovers equipped to search for evidence of previous water. 
The size of MER’S flight software is roughly 300K Lines 
of Code, implementing approximately 400 software 
requirements of varying degrees of granularity. Although 
the software was delivered in a series of builds, we do not 
distinguish here among the builds due to the relatively 
small number of PFRs. 

The on-line ProblemBailure Reports (PFRs) filled out 
by the project consist of three parts. The first part 
describes the problem and is filled out by the tester when 
the problem occurs. The second part is filled out by the 
analyst assigned to investigate the problem. The third part 
is filled in later with a description of the corrective action 
that was taken to close out the problem. 

The approach we selected for the analysis of the PFRs 
was an adaptation of Orthogonal Defect Classification 
(ODC) [l]. ODC provides a way to “extract signatures 
from defects“ and to correlate the defects to attributes of 
the development process (Fig. 1). Our ODC-based 
approach uses four attributes to characterize each PFR: 
Activity, Trigger, Target, and Type. The Activity 
describes where the defect surfaced, e.g., Integration Test 
or System Test. The Trigger describes the environment or 
condition that had to exist for the defect to appear. In the 
testing environment, the trigger was usually the testing of 
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a single command or of a capability sequence (Le., a 
software requirement scenario). The Target describes the 
high-level entity that was fixed in response to the problem 
report, e.g., Flight software, Ground software, etc. The 
Type describes the actual correction that was made, i.e., 
“the meaning of the fix” [ 13. 

The two authors classified the PFRs using the adapted 
ODC. Both of us have experience on flight projects at JPL 
but neither are directly involved with the testing of the 
MER software. MER engineers generously assisted us 
with answers to our process and domain questions. 

Following the ODC approach, we defined each 
classification attribute and the possible values it could 
take in a document that was reviewed by MER project 
personnel. Adaptation of the standard ODC categories to 
the spacecraft domain was driven by the need to capture 
core properties of the anomalies seen during testing. In 
order to improve repeatability and reduce bias, the 
process of classification involved three steps in which (1) 
each analyst separately classified the set of anomalies, (2) 
inconsistent classifications were highlighted and each 
analyst had an opportunity to correct any clear errors in 
her own classifications (e.g., missing fields), and (3) they 
analysts jointly reviewed the remaining inconsistencies 
and resolved them through discussion. A detailed 
description of the classification process and of efforts to 
remove bias is provided in [9]. 

The work reported here is part of a multi-year pilot 
study to reduce the number of safety-critical software 
anomalies that occur post-launch. This paper reports the 
first experience using the adapted ODC technique on a 
spacecraft currently under development. The motivation 
was to mine the testing problem reports for insights into 
how requirements discovery during testing can be used to 
forestall or mitigate some critical software anomalies 
during operations. 

3. Results and analysis 

We here describe each of the four mechanisms for 



requirements discovery and resolution identified during 
analysis of the Probleflailure Reports (PFRs) generated 
in integration and system testing of the spacecraft 
software. A subsection describes each mechanism in 
terms of the ODC classification values that characterize it, 
provides a more in-depth causal analysis of some typical 
examples, and evaluates the adequacy of the corrective 
action taken to resolve the requirements discovery. 

3.1 Incomplete requirements, resolved by changes 
to the software 

Sixty-five of the completed 17 1 integration and system 
testing PFRs were resolved by a change to the flight 
software (Fig. 2). In ODC terms, the Target for these 
sixty-five PFRs was “Flight Software.” Twenty-three of 
the Flight Software PFRs had an ODC Type of 
“Assignment/Initialization.” These PFRs were resolved 
by changes to parameters in the light of new system 
knowledge. They entailed discovery of new requirements 
knowledge, but not of new functional requirements. Two 
typical examples of these PFRs are, in one case, a change 
to the value of the variable “max” to avoid unintended 
triggering of fault protection and, in another case, a 
change to require that a component come up disabled 
rather than enabled after a reboot. 

Another twenty-three of the sixty-five Flight Software 
testing PFRs had an ODC Type of “Function/Algorithm.” 
Some of these changes involved design or implementation 
issues such as testing of hnctions not yet delivered in the 
current build. However, the PFRs of interest to us from a 
requirements perspective are the ten that entailed more 
substantial changes to the flight software as the result of 
knowledge gained during testing. 

Each of these ten PFRs was resolved by requiring a 
new software function. Most of the corrective actions 
taken to close these PFRs involved additional reasonable 
checks on preconditions and post-conditions. Several 
involved startuphestart scenarios, or the correct triggering 
of recovery software. New requirements included an 
additional health check, a parameter validation check, an 
irhbit to checks of disabled software, distinguishing 
unavailability from non-response of a unit, turning off 
encoding in some cases, ignoring false out-of-order 
messages, providing a new capability to copy a rate to a 
register, an additional check so a warning does not occur 
in a shutdown mode, and a new capability to command a 
hardware unit. 

An additional seven of the Flight Software PFRs had an 
ODC Type of “Timing,” and seven more had an ODC 
Type of “Interfaces.” In these types, as well, the role of 
testing in the discovery of new requirements was evident. 
Due to space constraints, we only mention briefly that 
several resulted in new requirements to insert delays in 
the software to compensate for interface delays. It is 
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worth noting that no PFRs documented extra 
requirements (where the flight software &d more than it 
should). 

3.2 Unexpected requirements interactions, 
resolved by changes to the operational 
procedures 

The previous subsection described new requirements 
that were discovered during testing and resolved by 
changes to the flight software. In this subsection we 
describe unexpected requirement interactions that were 
discovered during testing and fixed, not by changes to the 
software, but instead by changes to the procedures that 
will constrain operational activities. 

This mechanism for requirements dmovery tended to 
involve emerging requirements, not discovered until 
testing, on the sequencing or timing of activities in 
interfacing software components or softwarehardware 
interfaces. The ODC Target for these thirteen PFRs was 
“Information Development” and the ODC Type for these 
PFRs was “Missing or Incomplete Procedures.” This 
second mechanism is a special case of the incomplete 
requirements described above, involving new knowledge 
and requirements that must be enforced on interactions. 
However, this mechanism differs from the first 
mechanism described above in that achievement of the 
new requirement is here allocated to procedures rather 
than to software. 

Most of these PFRs dealt only with testing procedures 
and were not relevant to operations or maintenance. 
However, three of them involved requirements discovery 
during testing of unexpected requirements interactions. 
In each of these three cases, responsibility for the 
requirement was allocated to operations. For example, in 
one PFR testing revealed that unless a spacecraft 
component was re-calibrated before use, it triggered fault- 
protection software. The discovery of ths  requirement 
for sequential activities (calibrate, then use) was allocated 
to an operational procedure. 

In another, a tester observed that, contrary to 
expectations, an off command was issued redundantly by 
a software fault monitor. Analysis showed that this 



behavior was correct, but idiosyncratic. The corrective 
action was to avoid these redundant commands during 
operations by carefully selecting the hgh  and low limits 
to preclude the state observed in testing. It is easy to see 
how, even with a documented procedure in place, this 
situation might recur in operations. 

This mechanism for requirements discovery is of 
interest in preventing operational anomalies because 
corrections made to procedures still depend on the correct 
implementation of the procedure by the operator of the 
deployed system each time the relevant scenario arises. 
We were thus interested in whether some of the new 
requirements for constraining interactions, levied on the 
operational procedures, might be better handled in 
software. Given the small number of PFRs in the study, 
no conclusion was appropriate. However, the examples 
suggest that in long-lived systems, the tradeoff between 
easy but operator-dependent procedural fixes and more 
costly but operator-independent software fixes is worth 
explicit consideration. 

3.3 Requirements confusion by the testers, 
resolved by changes to the documentation 

The previous two subsections both described 
requirements discovery mechanisms in which the testers’ 
expectations were consistent with the required software 
behavior. Testing revealed missing requirements that had 
to be added in order to achieve the correct, and expected, 
behavior. The requirements discovery mechanism 
described in th s  section is different in that the testers’ 
expectations regarding the required software behavior are 
incorrect. The resolution is to try to remove the source of 
the testers’ confusion by improving the documentation of 
the existing requirements and their rationale. 

Fourteen of the 171 testing PFRs were resolved by 
changes to the documentation. The ODC Target for these 
PFRs was “Information Development” and their ODC 
Type of change was “Documentation.” (Only PFRs that 
changed just documentation but not software or 
procedures are labeled with this type). 

Four of the PFRs of type “Documentation” revealed 
erroneous requirements assumptions by the testers. For 
example, in one case, the tester incorrectly assumed that 
certain heaters remain on during the transition from one 
mode to another, as the spacecraft transitions from the 
pre-separation mode of the Mars lander to the 
entryldescent mode as the lander enters the Martian 
atmosphere. The tester’s assumption was reasonable but 
incorrect. In fact, there is software requirement on another 
component to turn the heaters off when this transition 
occurs. Documentation of this fact was added to the 
Functional Design Document and the procedure writers 
were notified of the update in order to correct the 
misunderstanding prior to launch. 

In these PFRs it was requirements confusion, rather 

than new requirements that were discovered during 
testing. The perceived inconsistency between the test 
results and the required behavior was inaccurate. The 
corrective action was not to fix the software but the 
source of confusion. This resulted in improved 
communication of the rationale for the existing behavior 
in the existing project documentation 

3.4 Requirements confusion by the testers, 
resolved by a determination that no change was 
needed. 

The final mechanism for requirements discovery is 
similar to the previous one except that no fix is made, 
even to documentation. Thuty of the 171 testing PFRs 
have an ODC Target of “None/Unknown” and an ODC 
Type of “Nothing Fixed.” The reason that nothing was 
fixed is that these PFRs were “false positives”, raising an 
alarm when nothmg was broken. Our interest in 
investigating this mechanism was to see if any of these 
PFRs described requirements confusion or requirements 
interactions that could potentially recur in flight 
operations. If so, it might be that some change to 
documentation or procedure was indicated. 

As expected, for most of the PFRs there was, in fact, 
notlung to fix. For example, thirteen of the thuty PFRs 
referred to problems that were no longer relevant (e.g., the 
current build removed the issue), two were clearly one- 
time operator errors (e.g., misreading the test results), and 
three were relevant only to the test environment but not to 
flight. However, eight of the thirty raised possible flight 
concerns, although in each case the software worked as 
required. We describe several of these more fully here, 
since they support our claim that false positives 
encountered during testing often provide a useful window 
into latent requirements misunderstandings during 
operations. 

For example, in one case the PFR reported as an error 
that commands issued when a remote unit was off were 
not rejected as expected, but instead were completed 
when the unit rebooted. Although the software operated 
correctly, the PFR revealed a gap in understanding of the 
rationale for the software’s required behavior (a gap, by 
the way, that was shared by the analysts). Since this 
requirements confusion could apparently reappear in a 
post-launch operational scenario, it may merit additional 
documentation to preclude a similar mistake by an 
operator. 

Another PFR of Type “Nothmg Fixed” describes a 
situation in which one component, attempting to 
communicate with another component, received warning 
messages indicating that an invalid response had 
occurred. In fact, the communication attempt happened to 
occur during a few-millisecond timeout that takes place in 
some particular scenarios. This behavior is, in fact, 
correct and required, and subsequent communication 



attempts will be normal. However, the effect of the 
timeout is rather subtle. 

In a third example, the tester incorrectly assumed that 
a telemetry (data download) channel output the value of a 
counter when, the channel instead provided the value of 
the counter’s high-water mark (the highest value yet 
recorded for the counter). Thus, even when the counter 
was reset, the telemetry value remained constant. The 
requirements rationale is sound -- that the fault-protection 
software needs information regarding the worst-case over 
a time interval, not just the current snapshot of a 
frequently reset counter. However, the requirements 
misunderstanding by the tester is reasonable and suggests 
that a similar erroneous assumption might be possible 
later. 

Testing PFRs often provide detailed descriptions of 
sequences of input, states, error messages, and even 
partial dumps in order that the test scenario can later be 
duplicated. This level of detail is extraordinarily useful in 
allowing an analyst to pinpoint not only whether an error 
has occurred but also the source of any confusion 
regarding the required behavior. Incorrect assumptions 
(e.g., about the effect of specific commands on the state 
of the system) and gaps in domain knowledge (e.g., of 
hardware idiosyncrasies or transients) can often be 
identified from the details in the problem reports. 

3.5 Implications for testing 

Given limited project resources (in terms of schedule 
and budget), should these “false-positive” testing reports 
be documented further? Based on the problem reports 
seen here and on past experience with operational 
anomalies [8, 91, we suggest the following guideline: if 
the situation described in the problem report could recur 
in operations, and if the requirements confusion or 
misunderstanding of required interactions could also 
recur in operations, then the problem report may merit 
additional attention. Using h s  guideline, each of the 
three examples above would have involved additional 
corrective actions. 

For example, one such false-positive PFR recorded a 
perceived discrepancy between two time tags that should 
be identical. In fact, the software worked as required. 
The two time tags were two different representations of 
the same time (cumulative number of seconds since a 
standard base time and the translation of that value to the 
current UTC, the Universal Time). This misunderstanding 
by the tester is one that could be repeated by an operator 
or maintenance programmer with conceivably hazardous 
effect, so may merit additional documentation. 

Experience with the MER testing PFRs also suggests 
that PFRs related to certain critical activities always merit 
additional attention even if the PFR merely records 
requirements confusion. Thus, if the testing PFR involves 
fault protection software, critical control software, critical 

maneuvers or activities (e.g., engine bums), or critical 
mission phases (e.g., insertion of the spacecraft into a 
planetary orbit), then the problem report should not be 
closed without measures being taken to prevent the 
required behavior that surprised the testers from later 
surprising the operators. 

3.6 Implications for operations 

False-positive problem reports from testing (when the 
software behavior was correct but unexpected, so nothing 
was fixed) have significant value in a development 
organization if the requirements confusion or emerging 
domain knowledge that led to them can be identified and 
remedied. Especially in a long-lived spacecraft system 
where turnover of operational personnel is to be expected, 
loss of knowledge regarding requirement rationale can be 
substantial. It appears that testers’ requirements 
confusion may provide some small degree of “crystal 
ball” insight into possible future post-release 
misunderstandings and, thus, the opportunity to preclude 
or mitigate those gaps whether by documentation, 
training, or changes to software or procedures. 
Techniques to trace the requirements misunderstandings 
encountered during testing into operations is at this time 
an open problem. 

Some results from a recent study by the authors 
confim that the requirements discovery mechanisms 
found in testing can affect safety-critical operations. This 
ODC-based study profiled 199 safety-critical software 
anomalies recorded post-launch on seven spacecraft [9]. 
One of the surprises to emerge from that study was that 
some procedures needed for post-launch operations were 
not in place, and that these omissions contributed to 21% 
of the safety-critical anomalies. Another finding related 
to requirements discovery was that in most of the 
anomalies of Type “Nothing Fixed” (14% of the total), 
what was originally reported as a safety-critical anomaly 
was in fact the required behavior of the spacecraft, i.e., 
requirements confusion. Better understanding of the 
various requirements-discovery mechanisms in testing has 
as its primary goal to prevent slippage of requirements- 
related testing problems into operations. 

4. Related Work 

Most work on the analysis of testing defects has 
focused on measuring the quality or readiness of the 
software for release (see, e.g., [2]). In our study, the focus 
was instead on how to use the requirements discoveries 
made during testing (either of incomplete software or of 
incorrect human assumptions) to reduce critical defects 
during operations. 

The results reported here tend to c o n f m  the central 
role that Hanks, Knight, and Strunk have found for 



problems communicating domain knowledge [3]. Weiss, 
Leveson, Lundqvist, Farid, and Stringfellow specifically 
implicate requirements misunderstanding in several recent 
disasters, stating, “software-related accidents almost 
always are due to misunderstanding about what the 
software should do” [ 101. In this regard, the instances of 
requirements confusion found here are somewhat similar 
to the examples of mode confusion by pilots and other 
operators that Leveson and others have described. 

Previous work by one of the authors found that safety- 
related testing defects on two earlier spacecraft arose most 
commonly from (1) misunderstanding of the software’s 
interfaces with the rest of the system and (2) 
discrepancies between the documented requirements and 
the requirements needed for correct hctioning of the 
system [7]. A recent study by Lausen and Vintner found 
similar results for non-critical systems, with slightly more 
than half of the defect reports were requirements defects, 
with the major source being missing requirements [5]. 
Several defect classification methods (see, e.g., [6, 11) 
include communication failures as root causes or as defect 
triggers. However, these approaches tend not to 
distinguish requirements confusion in which the reported 
software behavior is actually correct from other kinds of 
communication failures, as we found needful here. These 
studies also focus on ways to prevent requirements 
defects from reaching testing, whereas we are more 
interested in how to use testing problem reports to prevent 
defects from reachmg operations. 

Harold recently suggested the use of “test artifacts” for 
software engineering tasks in describing future directions 
for work, but added that “this research is in its infancy” 
[4]. The experience described here suggests that testing 
problem reports may be useful test artifacts that can be 
more effectively mined for requirements insights to 
reduce post-deployment anomalies. 

5. Conclusion 

The results reported here distinguish four common 
mechanisms for requirements discovery and resolution 
during the integration and system testing of a safety- 
critical software system. One of the lessons learned was 
that requirements discovery during testing is frequently 
due to communication difficulties and subtle interface 
issues. Requirements discovery in testing thus drove 
changes not only to the software but also to the 
operational procedures and to the documentation of 
requirements rationale. Another lesson learned was that 
false-positive problem reports from testing (where the 
software behaves correctly but unexpectedly) provide a 
rich source of insights into potential requirements-related 
anomalies during operations. This information may be 
able to be used to reduce operational anomalies in critical 
systems. 
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